Student Question

`int cosx/sqrt(sin^2x+1) dx` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall that indefinite integral follows: `int f(x) dx = F(x)+C`


`f(x)` as the integrand function

`F(x) ` as the antiderivative of `f(x)`

`C` as constant of integration.

To evaluate given integral problem: `int cos(x)/sqrt(sin^2(x)+1)dx` or `int (cos(x)dx)/sqrt(sin^2(x)+1)` , we may apply u-substitution by letting:

`u = sin(x)` then `du =cos(x) dx` .

Plug-in the values ,  the integral becomes:

`int (cos(x)dx)/sqrt(sin^2(x)+1)=int (du)/sqrt(u^2+1)` or `int (du)/sqrt(u^2+1^2)`

The integral resembles one of the formulas from the integration table for rational function with roots. We follow:

`int (dx)/sqrt(x^2+a^2) = ln|x+sqrt(x^2+a^2)|+C`

By comparing `x^2+a^2` with `u^2+1^2` , we determine the corresponding values as: x=u and a=1.

Applying the values on the integral formula for rational function with roots, we get:

`int (du)/sqrt(u^2+1^2)=ln|u+sqrt(u^2+1^2)| +C`

                                `=ln|u+sqrt(u^2+1)| +C`

Plug-in `u = sin(x)` on  `ln|u+sqrt(u^2+1)| +C` , we get the indefinite integral as:

`int cos(x)/sqrt(sin^2(x)+1)dx=ln|sin(x)+sqrt(sin^2(x)+1)| +C`

 Aside from this, we can also consider the another formula from integration table:

`int 1/sqrt(u^2+1)du = arcsinh(u) +C`

Plug-in `u = sin(x) ` on `arcsinh(u) +C` , we get another form of indefinite integral as:

`int cos(x)/sqrt(sin^2(x)+1)dx=arcsinh(sin(x)) +C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial