`int arctanx dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given ,

`int tan^(-1) (x)dx`

By Applying the integration by parts we get this solution


let` u=tan^(-1) (x) =>

`u'= (tan^(-1) (x) )'=1/(x^2+1)`

and `v'=1 =>v =x`

now by Integration by parts ,

`int uv' dx= uv-int u'v dx`

so , now

`int tan^(-1) (x)dx`

= `xtan^(-1) (x) - int 1/(x^2+1)*x dx`

=` xtan^(-1) (x) - int x/(x^2+1)dx`

=` xtan^(-1) (x) - 1/2int 2x/(x^2+1)dx`

let `q=x^2+1`

=> `dq = 2x dx`

so ,

`1/2int 2x/(x^2+1)dx = 1/2int 1/q dq = 1/2ln(q)+C`


 so, now

`int tan^(-1) (x)dx`= ` xtan^(-1) (x) -1/2ln(x^2+1)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial