Student Question

`int 1/(x^2-9) dx` Use partial fractions to find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int 1/(x^2-9)dx`

To solve using the partial fraction method, the first step is to factor the denominator of the integrand.

`1/(x^2-9) =1/((x - 3)(x +3))`

Then, express it as a sum of two fractions. 

`1/((x-3)(x+3))=A/(x-3)+B/(x+3)`

To solve for the values of A and B, multiply both sides by the LCD.

`(x-3)(x+3)*1/((x-3)(x+3))=(A/(x-3)+B/(x+3))*(x-3)(x+3)`

`1 = A(x+3)+B(x-3)`

Then, assign values to x in such a way that either (x+3) or (x-3) will be zero. So, plug-in x = 3 to get the value of A.

`1=A(3+3) + B(3-3)`

`1=A*6+B*0`

`1=6A`

`1/6=A`

Also, plug-in x=-3 to get the value of B.

`1=A(-3+3)+B(-3-3)`

`1=A*0 + B*(-6)`

`1=-6B`

`-1/6=B`

So the partial fraction decomposition of the integrand is:

`int 1/(x^2-9)dx=int (1/(6(x-3)) -1/(6(x+3)))dx`

Then, express it as difference of two integrals.

`=int 1/(6(x-3))dx - int 1/(6(x+3))dx`

`=1/6 int 1/(x-3)dx - 1/6 int 1/(x+3)dx`

And, apply the integral formula `int 1/u du = ln|u|+C` .

`=1/6ln|x-3| -1/6ln|x+3|+C`

Therefore, `int 1/(x^2-9)dx=1/6ln|x-3| -1/6ln|x+3|+C` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial