`int 1/(x^2+4x+8) dx` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand

          `F(x) ` as the anti-derivative function 

           `C `  as the arbitrary constant known as constant of integration

The format of the given integral problem: `int 1/(x^2+4x+8)dx` resembles one of the formulas from integration table. Recall we have indefinite integration formula for rational function as: 

`int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C`

By comparing `ax^2 +bx +c` with` x^2+4x+8` , we determine that `a=1` , `b=4,` and `c=8` .

Applying indefinite integration formula for rational function, we get:

`int 1/(x^2+4x+8)dx =2/sqrt(4(1)(8)-(4)^2)arctan((2(1)x+(4))/sqrt(4(1)(8)-(4)^2)) +C`

`=2/sqrt(32-16)arctan((2x+4)/sqrt(32-16)) +C`

`=2/sqrt(16)arctan((2x+4)/sqrt(16)) +C`

`=2/4 arctan((2x+4)/4) +C`

`=2/4 arctan(((2)(x+2))/4) +C`

`=1/2 arctan((x+2)/2) +C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial