`int 1/sqrt(x^2-4) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int1/sqrt(x^2-4)dx`

Let's apply integral substitution:`x=2sec(u)`

`=>dx=2sec(u)tan(u)du`

`=int1/sqrt((2sec(u))^2-4)2sec(u)tan(u)du`

`=int(2sec(u)tan(u))/sqrt(4sec^2(u)-4)du`

`=int(2secutan(u))/(sqrt(4)sqrt(sec^2(u)-1))du`

Now use the trigonometric identity: `tan^2(x)=sec^2(x)-1`

`=int(2sec(u)tan(u))/(2sqrt(tan^2(u)))du`

`=intsec(u)du`

Now use the standard integral:`intsec(x)dx=ln|sec(x)+tan(x)|`

`=ln|sec(u)+tan(u)|` ----------(1)

Now from the substitution:

`sec(u)=x/2`  and,

`tan^2(u)=sec^2(u)-1`

`tan^2(u)=(x/2)^2-1`

`tan^2(u)=(x^2-4)/4`

`tan(u)=sqrt(x^2-4)/2`

Substitute back the above in the result  (1)

`=ln|x/2+sqrt(x^2-4)/2|`

`=ln|(x+sqrt(x^2-4))/2|`

`=ln|x+sqrt(x^2-4)|-ln(2)`

Since `ln(2)`  is constant, so we can omit it and add a new constant C to the solution,

`=ln|x+sqrt(x^2-4)|+C`

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial