`int 1/(4+4x^2+x^4) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int1/(4+4x^2+x^4)dx`

Let's rewrite the integrand as :

`=int1/((x^2)^2+2(2)(x^2)+2^2)dx`

`=int1/(x^2+2)^2dx`

Apply integral substitution:`x=sqrt(2)tan(u),u=arctan(x/sqrt(2))`

`dx=sqrt(2)sec^2(u)du`

`=int(sqrt(2)sec^2(u))/((sqrt(2)tan(u))^2+2)^2du`

`=int(sqrt(2)sec^2(u))/(2tan^2(u)+2)^2du`

`=int(sqrt(2)sec^2(u))/(2^2(tan^2(u)+1)^2)du`

Take the constant out,

`=sqrt(2)/2^2int(sec^2(u))/(tan^2(u)+1)^2du`

Use the identity:`1+tan^2(x)=sec^2(x)`

`=sqrt(2)/4int(sec^2(u))/(sec^2(u))^2du`

`=sqrt(2)/4int1/(sec^2(u))du`

`=sqrt(2)/4intcos^2(u)du`

Use the trigonometric identity:`cos^2(x)=(1+cos(2x))/2`

`=sqrt(2)/4int1/2(1+cos(2u))du`

Take the constant out,

`=sqrt(2)/8int(1+cos(2u))du`

Apply the sum rule,

`=sqrt(2)/8{int1du+intcos(2u)du}`

Apply the common integral:`intcos(x)dx=sin(x)`

`=sqrt(2)/8{u+1/2sin(2u)}`

Substitute back `u=arctan(x/sqrt(2))`

`=sqrt(2)/8{arctan(x/sqrt(2))+1/2sin(2arctan(x/sqrt(2)))}`

`=sqrt(2)/8{arctan(x/sqrt(2))+1/2(2sin(arctan(x/sqrt(2)))cos(arctan(x/sqrt(2))))}`

`=sqrt(2)/8{arctan(x/sqrt(2))+sin(arctan(x/sqrt(2)))cos(arctan(x/sqrt(2)))}`

Use the identities:`sin(arctan(x))=x/sqrt(1+x^2),cos(arctan(x))=1/sqrt(1+x^2)`

`=sqrt(2)/8{arctan(x/sqrt(2))+x/sqrt(x^2+2)sqrt(2)/(sqrt(x^2+2))}`

`=sqrt(2)/8{arctan(x/sqrt(2))+(sqrt(2)x)/(x^2+2)}`

`=1/8{sqrt(2)arctan(x/sqrt(2))+2x/(x^2+2)}`

Add a constant C to the solution,

`=1/8(sqrt(2)arctan(x/sqrt(2))+(2x)/(x^2+2))+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial