`int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta` Find or evaluate the integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To evaluate the integral problem:` int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta` , we may apply Weierstrass substitution or tangent half-angle substitution .

This helps to determine the indefinite integral of a rational function in terms of sine and cosine. We let:

`u = tan(theta/2)`

`sin(theta) = (2u)/(1+u^2)`

`cos(theta) =(1-u^2)/(1+u^2)`

`d theta=(2 du)/(1+u^2)`

Plug-in the values to express the integral problem in terms variable "u'.

`int 1/(1+sin(theta)+cos(theta)) d theta=int 1/(1+(2u)/(1+u^2)+(1-u^2)/(1+u^2))*(2 du)/(1+u^2)`

`=int 1/(((1+u^2)/(1+u^2)+(2u)/(1+u^2)+(1-u^2)/(1+u^2)))*(2 du)/(1+u^2)`

`=int 1/(((1+u^2+ 2u +1-u^2)/(1+u^2)))*(2 du)/(1+u^2)`

`=int 1/(((2 +2u)/(1+u^2)))*(2 du)/(1+u^2)`

`=int 1 *(1+u^2)/ (2 +2u)*(2 du)/(1+u^2)`

`=int (2 du)/ (2 +2u)`

`=int (2 du)/ (2(1 +u))`

`=int (du)/(1+u)`

 

From the table of indefinite integration table, we follow the integral formula for rational function as:

`int (dx)/(ax+b)=1/aln(ax+b)`

By comparing "`ax+b` " with "`1+u` or `1u +1` ", the corresponding values are: `a=1` and `b=1` . Then, the integral becomes:

`int (du)/(1+u)=1/1ln(1u+1)`

                     `=ln(u+1)`

Plug-in `u =tan(x/2)` on `ln(u+1)` , we  get:

`int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta=ln(tan(x/2)+1)|_0^(pi/2)`

Apply the definite integral formula: `F(x)|_a^b= F(b)-F(a)` .

`ln(tan(x/2)+1)|_0^(pi/2)=ln(tan(((pi/2))/2)+1)-ln(tan(0/2)+1)`

                                   `=ln(tan(pi/4)+1)-ln(tan(0)+1)`

                                   `=ln(1+1)-ln(0+1)`

                                   `=ln(2)-ln(1)`

                                   `= ln(2/1)`

                                   `=ln(2) or 0.693`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial