`int_0^4 x/sqrt(3+2x) dx` Use integration tables to evaluate the definite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 To evaluate the given integral problem:  `int_0^4 x/sqrt(3+2x)dx` , we determine first the indefinite integral function F(x). From the table of indefinite integrals, we may consider the formula for integrals with roots as:

`int u/sqrt(u+-a) du = 2/3(u-+2a)sqrt(u+-a)+C`

 Take note that we have "`+` " sign inside the square root on `int_0^4 x/sqrt(3+2x)dx`  then  we will follow: 

`int u/sqrt(u+a) du = 2/3(u-2a)sqrt(u+a) +C.`

 We may let `a = 3` and `u = 2x`  or `x= u/2`

For the derivative of u, we get `du = 2 dx` or `(du)/2 = dx` .

Plug-in the values: `u = 2x` or `x=u/2` ,and `(du)/2 = dx` , we get:

`int_0^4 x/sqrt(3+2x)dx =int_0^4 (u/2)/sqrt(3+u)* (du)/2`

                        `=int_0^4 (u du)/(4sqrt(3+u))`

 Apply the basic properties of integration:` int c*f(x) dx= c int f(x) dx` .

`int_0^4 (u du)/(4sqrt(3+u)) =1/4 int_0^4 (u du)/sqrt(3+u)`

Apply the aforementioned integral formula from the table of integrals, we get:

`1/4 int_0^4 (u du)/sqrt(3+u) =1/4*[2/3(u-2(3))sqrt(u+3)]|_0^4`


                ` =2/12(u-6)sqrt(u+3)|_0^4`

                ` =1/6(u-6)sqrt(u+3)] |_0^4or((u-6)sqrt(u+3))/6|_0^4`

Plug-in `u = 2x ` on`((u-6)sqrt(u+3))/6 +C` , we get:

`int_0^4 x/sqrt(3+2x)dx =((2x-6)sqrt(2x+3))/6|_0^4`

Apply definite integral formula: `F(x)|_a^b = F(b) - F(a)` .

`((2x-6)sqrt(2x+3))/6|_0^4 =((2(4)-6)sqrt(2(4)+3))/6-((2(0)-6)sqrt(2(0)+3))/6`

`=((8-6)sqrt(8+3))/6- ((0-6)sqrt(0+3))/6`

`=(2*sqrt(11))/6- (-6sqrt(3))/6`

`= sqrt(11)/3-(-sqrt(3))`

`= sqrt(11)/3+sqrt(3) `

`= (sqrt(11)+3sqrt(3))/3` or `2.84` (approximated value).

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial