`int_0^3 sqrt(x^2+16) dx` Use integration tables to evaluate the definite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall indefinite integral follows `int f(x) dx = F(x)+C`

 where:

`f(x)` as the integrand

`F(x)` as the antiderivative of f(x)

`C` as the constant of integration.

From the table of integrals, we follow the formula:

`sqrt(x^2+-a^2) dx = 1/2xsqrt(x^2+-a^2)+-1/2a^2ln|x+sqrt(x^2+-a^2)|`

 From the given problem `int_0^3 sqrt(x^2+16) dx` , we have a  addition sign (+) in between terms inside the square root sign. Then, we follow the formula:

`int sqrt(x^2+a^2) dx = 1/2xsqrt(x^2+a^2)+1/2a^2ln|x+sqrt(x^2+a^2)|`

 Take note that we can express  `16 = 4^2` then the given problem becomes:`int_0^3 sqrt(x^2+4^2) dx` .

 The `x^2 +4^2` resembles the `x^2 +a^2` in the formula. Then by comparison, the corresponding values are:  `x=x`  and `a=4.`

Plug-in `x=x` and `a=4` on the formula, we get:

`int_0^3 sqrt(x^2+16) dx ` `=[1/2xsqrt(x^2+4^2)+1/2*4^2ln|x+sqrt(x^2+4^2)| ]|_0^3`

`=[1/2xsqrt(x^2+16)+1/2*16ln|x+sqrt(x^2+16)|]|_0^3`

`=[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3`

Apply definite integral formula:  `F(x)|_a^b = F(b) - F(a)` .

`[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3`

`=[1/2*3sqrt(3^2+16)+8ln|3+sqrt(3^2+16)|]-[1/2*0sqrt(0^2+16)+8ln|0+sqrt(0^2+16)|]`

`=[3/2sqrt(9+16)+8ln|3+sqrt(9+16)|]-[0*sqrt(0+16)+8ln|0+sqrt(0+16)|]`

`=[3/2*5+8ln|3+5|]-[0*4+8ln|0+4|]`

`=[15/2+8ln|8|]-[0+8ln|4|]`

`=15/2+8ln|8| -0-8ln|4|`

`=15/2+8ln|8| - 8ln|4|`

`=15/2+8(ln|8| - ln|4|)`

Apply natural logarithm property: `ln(x)- ln(y) = ln(x/y)` .

`=15/2+8ln|8/4|`

`=15/2+8ln|2|`

Apply natural logarithm property: ` n*ln(x) = ln(x^n)` .

`=15/2+ln|2^8|`

=`15/2+ln|256|`  or `13.05` ( approximated value)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial