Student Question

`int_0^(1/4) xln(x+1) dx` Use a power series to approximate the value of the integral with an error of less than 0.0001.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

From the basic list of power series, we have:

`ln(x) =sum_(n=0)^oo (-1)^(n) (x-1)^(n+1)/(n+1)`

         `= (x-1)-(x-1)^2/2+(x-1)^3/3 -(x-1)^4/4 +...`

We replace "`x` " with "`x+1` " to setup:

`ln(1+x) =sum_(n=0)^oo (-1)^n ((x+1)-1)^(n+1)/(n+1)`

               `=sum_(n=0)^oo (-1)^n x^(n+1)/(n+1)`

               `=x-x^2/2+x^3/3 -x^4/4+...`

Note: `((x+1)-1) = (x+1-1) = x`

Then,

`x ln(1+x) =sum_(n=0)^oo (-1)^n x^(n+1)/(n+1) *x`

                   `=sum_(n=0)^oo (-1)^n x^(n+2)/(n+1)`

Note: `x^(n+1) * x = x^(n+1+1) =x^(n+2)`

Applying the summation formula, we get:

`x ln(1+x)= x*[x-x^2/2+x^3/3 -x^4/4+...]`

                  or

                  `= x^2 -x^3/2+x^4/3-x^5/4 +...`

Then the integral becomes:

`int_0^(1/4) xln(x+1) = int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx`

To determine the indefinite integral, we integrate each term using the Power Rule for integration: `int x^n dx= x^(n+1)/(n+1)` .

`int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx`

` = [x^3/3 -x^4/(2*4)+x^5/(3*5)-x^6/(4*6) +...]_0^(1/4)`

` = [x^3/3 -x^4/7+x^5/15-x^6/24 +...]_0^(1/4)`

Apply definite integral formula: `F(x)|_a^b = F(b) - F(a)` .

`F(1/4) or F(0.25) =0.25^3/3 -0.25^4/7+0.25^5/15-0.25^6/24 +...`

                                `=1/192-1/1792+1/15360 -1/98304+...`

`F(0)=0^3/3 -0^4/7+0^5/15-0^6/24 +...`

          `= 0-0+0-0+...`

All the terms are 0 then `F(0) =0` .

We may stop at `4th` term `(1/98304~~0.00001017)` since we only need an error less than `0.0001` .

`F(1/4)-F(0) = [1/192-1/1792+1/15360 -1/98304]-[0]`

                       `= 0.00470522926`

Thus, the approximated integral value:

`int_0^(1/4) xln(x+1) dx ~~0.0047`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial