How do you solve this expression?

 

`log_x (125/27) = 3/4`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to solve the following equation such that:

`log_x (125/27) = 3/4`

You need to solve the equation for x using the logarithmic identity such that:

`log_x a = b => x^b = a`

Reasoning by analogy yields:

`log_x (125/27) = 3/4 => 125/27 = x^(3/4)`

Converting the rational power into a radical yields:

`x^(3/4) = root(4)(x^3)`

`125/27 = root(4)(x^3)`

You need to remove the radical, hence, you need to raise to the 4th power both sides such that:

`(125/27)^4 = x^3 `

You need to take cube root both sides such that:

`root(3)((125/27)^4) = root(3)(x^3)`

`125/27*root(3)(125/27) = x`

You should write `125 = 5^3`  and `27 = 3^3`  such that:

`125/27*root(3)(5^3/3^3) = x`

Converting the cube root into a rational power yields:

`125/27*((5/3)^3)^(1/3) = x`

`x = 125/27*(5/3) => x = 625/81`

Since `625/81>0`  and `625/81!=1` , hence, evaluating the solutions to the given equation yields `x = 625/81` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial