How do you find the inverse of a function f(x), `f^-1(x)`?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The inverse `f^-1(x)` of a function f(x) can be found in the following way.

Usually the graph of a function f(x) is written as y = f(x). All points on the graph represent (x, f(x)).

Take y = f(x) and rewrite it in a form where y is the independent variable and x is the dependent variable. It is possible to find the inverse of a function only where one value of f(x) does not correspond to more than one value of x.

For example, consider the function f(x) = 3x + 5

y = 3x + 5

Now express x as an expression with y

=> 3x = y - 5

=> x = (y - 5)/3

Therefore the inverse of f(x) is `f^-1(x) = (x - 5)/3`

In a similar manner the inverse of any function can be found if there is a one-to-one correspondence between x and f(x).

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial