Student Question

What is the orthocentre of a triangle given the points A(-1,5) B(7,2) C(-1,-4)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The orthocentre of a triangle is the point where the altitude of the three sides intersect. For the triangle with vertices at A(-1,5), B(7,2) C(-1,-4) and first determine the altitude of any two sides and then the point at which they intersect.

The slope of the line AB is `(5 - 2)/(-1-7) = -3/8` . The slope of the altitude is `8/3` . As it passes through C(-1, -4) the equation is `(y + 4)/(x + 1) = 8/3`

=> 3(y + 4) = 8(x + 1)

=> 8x - 3y - 4 = 0

The slope of the line AC is `(-4 - 5)/(-1 + 1) = oo` . The altitude is a vertical line. As it passes through B(7, 2) the equation is y = 2.

The point of intersection of 8x - 3y - 4 = 0 and y = 2 is (1.25, 2)

The required orthocentre is (1.25, 2)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial