The graph y= f(x) passes through the points (1, 5) and (3, 7). The tangent line to y= f(x) at (3, 7) has the equation: y= -2x + 13.

The graph y= f(x) passes through the points (1, 5) and (3, 7). The tangent line to y= f(x) at (3, 7) has the equation: y= -2x + 13. make a possible graph of f and the tangent line. What is the average rate of change of  f(x) on the interval 1 ≤ x ≤ 3? What is the instantaneous rate of change of f(x) at the point (3, 7)? Explain. Explain why f(x) has a critical number in the interval 1 ≤ x ≤ 3? You can assume that f’(x) is continuous. In your explanation use the Mean Value Theorem, to argue that for some c, f’ (c) = 1. Then use the Intermediate Value Theorem applied to f’(x) to argue that for some d, f” (d) = 0.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We are given that `f(1)=5,f(3)=7` and the tangent to the graph of `f(x)` at (3,7) is `-2x+13` . One possibility for `f(x)` is `f(x)=-3/2x^2+7x-1/2`

The graph of `f(x)` and the given tangent line:

** If f(x) is a quadratic, then `f(x)=ax^2+bx+c` . Using the two given points we have `f(1)=5==>a+b+c=5,f(3)=7==>9a+3b+c=7` . The derivative is `f'(x)=2ax+b` and `f'(3)=-2=2a(3)+b==>b=-2-6a`

Substituting for b we get the system `-5a+c=7,-9a+c=13` so `a=-3/2,b=7,c=-1/2` **

(1) The average rate of change of f(x)  on [1,3] is `(f(3)-f(1))/(3-1)=(7-5)/(3-1)=1`

(2) The instantaneous rate of change of f(x) at (3,7) is `f'(3)=-2` . This is the slope of the tangent line at x=3. For the example, `f'(x)=-3x+7==>f'(3)=-9+7=-2`

(3) How do we know that f(x) has a critical number on [1,3]? Assuming that f(x) and f'(x) are continuous on [1,3] we can apply the Mean Value Theorem: `f` continuous on `[a,b]` and differentiable on `(a,b)` implies that there exists a c in `(a,b)` such that `f'(c)=(f(b)-f(a))/(b-a)` . This there exists a `c in (1,3)` such that `f'(c)=(7-5)/(3-1)=1` . ` `

Now `f'(x)` is continuous by assumption on `[a,b]` , so we can apply the Intermediate Value Theorem to `f'(x)` . Then since  there is a c in (a,b) such that `f'(c)=1` and `f'(3)=-2` and `1>0> -2` then there is a `d in[a,b]` such that `f'(d)=0` .Since f'(x) is continuous, the point at x=d is a critical point. (The point in our example is x=7/3: `f'(7/3)=0` )

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial