*Given `x^7-7x^6+x^5-3x^4+x^2-2x+3=0` , determine if -1 is a lower bound
on the roots, and if 2 is an upper bound on the roots.*

We use synthtetic division and the following theorem: If after applying synthetic division for a prospective root the resulting coefficients alternate from nonnegative to nonpositive etc..., then the prospective root is a lower bound on the real roots. If the resulting coefficients are all nonnegative, the prospective root is an upper bound on the real roots.

(1) The coefficients for synthetic division are 1,-7,1,-3,0,1,-2,3.

(2) First we try -1:

-1| 1 -7 1 -3 0
1 -2 3

1 -8 9 -12 12 -11 9 -6

**Notice the alternating signs, so -1 is a lower bound on the real
roots.**

(3) Next we try 2:

2| 1 -7 1 -3
0 1 -2 3

1 -5 -9 -21-42 -83 -168 -333

**The coefficients are not all nonnegative, so 2 is not an
upper bound on the real roots.**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.