Given the system of equations in two variables a_1 x+b_1 y=c_1 and a_2 x+b_2 y=c_2...

assign possible values of a_1, b_1, c_1, a_2, b_2, c_2 to make the system consistent and independent

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to remember that a consistent independent system has only one solution.

You should remember what the condition for a system to be consistent is: the determinant of coefficient matrix is not zero such that:

`Delta = [[a_1,b_1],[a_2,b_2]] != 0`

`Delta = a_1*b_2 - a_2*b_1`

`a_1*b_2 - a_2*b_1 != 0 =gt a_1*b_2!= a_2*b_1`

`a_1/a_2 != b_1/b_2`

You may solve the system using Cramer's rule such that:

`x =([[c_1,b_1],[c_2,b_2]])/Delta ; y = ([[a_1,c_1],[a_2,c_2]])/Delta`

Notice that in determinant `[[c_1,b_1],[c_2,b_2]], ` the column of constant terms replaces the columns of coefficients of x and in determinant  `[[a_1,c_1],[a_2,c_2]], ` the column of constant terms replaces the columns of coefficients of y.

Hence, the system is consistent if you consider the relation between the coefficients of x and y variables `a_1/a_2 != b_1/b_2.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial