`g(x) = 2x^2 - 3x, c=2` Use the alternative form of the derivative to find the derivative at x = c (if it exists).

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given the function `f(x)=2x^2-3x` , c=2.

We have to use the alternative form of derivative to find the derivative at x=c.

Here given that c=2.

So by definition of alternative derivative we have,


`f'(c)=lim_(x->c)(f(x)-f(c))/(x-c)`

`f'(2)=lim_(x->2)(f(x)-f(2))/(x-2)`

` =lim_(x->2)(2x^2-3x-(2(2^2)-3(2)))/(x-2)`

`=lim_(x->2)(2x^2-3x-2)/(x-2)`

`=lim_(x->2)((2x+1)(x-2))/(x-2)`

`=lim_(x->2) 2x+1`

`=5`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial