Find the value of `f(0)` when `f''(t) = 2(9t + 4)`  and `f'(1) = 3` , `f(1) = 5` .

 

Find the value of f(0) when f'(t) = 4 cos(2t) , f(pi/4) =4 .

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To solve for f(0), we need to determine the function, f(t). To do so, integrate f "(t). The integral of this is equal to f '(t) .

`f ''(t) = 2(9t + 4)= 18t + 8`

`f ' (t) = int f ''(t) dt = int (18t + 8) dt = int 18t dt + int 8dt`

`f'(t) = 9t^2 + 8t + C`

To determine the value of C, substitute the given f '(1) = 3.

`3 = 9(1)^2+8(1)+C`

`3=17+C`

`-14=C`

So,  `f '(t) = 9t^2+8t-14` .

Then, integrate f'(t) to get f(t).

`f (t) = int f'(t) d(t) = int (9t^2+8t-14) dt = int 9t^2dt + int 8t dt -int 14dt`

`f(t) =3t^3 +4t^2-14t + C`

Substitute f(1)=5 to determine the value of C.

`5 = 3(1)^3 + 4(1)^2-14(1) + C`

`5=-7+C`

`12=C`

Hence,` f(t) = 3t^3+4t^2-14t+12` .

Now that we know the function f(t), we may now be able to solve for f(0).

Substitute t=0 to the function f(t).

`f(0) = 3(0)^3 + 4(0)^2-14(0)+12=12`

Therefore, `f(0) = 12.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial