Find the length of the arc formed by `y= 1/(8(-2x^2+4ln(x)))`  from x = 3 to x = 8.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the following formula to evaluate the given arclength such that:

`l = int_a^b sqrt(1 + (f'(x))^2)dx`

Reasoning by analogy yields:

`int_3^8 sqrt(1 + ((1/8(-2x^2+4ln(x)))')^2)dx`

You need to evaluate the derivative of the function `f(x) = 1/8(-2x^2+4ln(x))` , using quotient rule, such that:

`f'(x) = (-(-16x^2+32lnx)')/(64(-2x^2+4lnx)^2)`

`f'(x) = (32x- 32/x)/(64(-2x^2+4lnx)^2)`

Factoring out 32 yields:

`f'(x) = (x - 1/x)/(2(-2x^2+4lnx)^2)`

Raising to square yields:

`f'(x)^2 = (x - 1/x)^2/(4(-2x^2+4lnx)^4)`

You need to evaluate the integral`int_3^8 sqrt(1 + ((1/8(-2x^2+4ln(x)))')^2)dx`  such that:

`int sqrt(1 + (x - 1/x)^2/(4(-2x^2+4lnx)^4))dx`

`int (sqrt (4(-2x^2+4lnx)^4 + (x - 1/x)^2))/(2(-2x^2+4lnx)^2)dx`

Hence, evaluating the arclength of the given curve yields `l =int_3^8 (sqrt (4(-2x^2+4lnx)^4 + (x - 1/x)^2))/(2(-2x^2+4lnx)^2)dx.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial