Find the derivative `(dy)/(dx)` .

`y^2-xy=2`

Find dy/dx ............

y^2-xy=2

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`y^2-xy=2`

To determine `(dy)/d(x)` , let's apply implicit differentiation. So,

`d/(dx)(y^2-xy = 2)`

`d/(dx) (y^2) - d/(dx) (xy) = d/(dx) (2)`

Note that the derivative of a constant is zero ( (c)' = 0) .

`d/(dx) (y^2) - d/(dx)(xy) = 0`

To take the derivative of `y^2` , apply the power formula which is `(u^n) = n*u^(n-1)u'` .

`2y y' - d/(dx) (xy) = 0`

Also, for `d/(dx) (xy)` , use the product formula of derivatives which is

`(uv)'= vu' + uv'`

`2yy' - (yx' + xy') = 0`

Note that `x' = d/(dx) (x) = 1` . And, `y'= d/(dx)(y)=(dy)/(dx)` .

`2y(dy)/(dx) - (y + x(dy)/(dx))=0`

`2y(dy)/(dx) - y -x(dy)/(dx)=0`

Isolate the terms with `(dy)/(dx)` .

`2y(dy)/(dx)-x(dy)/(dx)=y`

`(dy)/(dx)(2y-x)=y`

`(dy)/(dx)=y/(2y-x)`

Hence,   `(dy)/(dx)=y/(2y-x)` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial