`f(x)=sqrt(1+x^3)` Use the binomial series to find the Maclaurin series for the function.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A binomial series is an example of infinite series. It is a series that is only convergent when we have `|x|lt1` and with a sum of `(1+x)^k `  where k is any number. To apply binomial series in determining the Maclaurin series of a given function `f(x) = (1+x)^k` , we may apply the formula:

`(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n`

 or

`(1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...`

To evaluate the given function` f(x) = sqrt(1+x^3)` , we may apply the radical property: `sqrt(x)= x^(1/2)` . The function becomes:

`f(x) =(1+x^3)^(1/2)`

or

`f(x) =(1+x^3)^0.5`

To apply the aforementioned formula for binomial series, we may replace "`x` " with "`x^3` " and "k" with "`0.5` ". We let:

`(1+x^3)^0.5 = sum_(n=0)^oo (0.5(0.5-1)(0.5-2)...(0.5-n+1))/(n!) (x^3) ^n`

`=sum_(n=0)^oo (0.5(-0.5)(-1.5)...(0.5-n+1))/(n!) x^(3n)`

`=1+0.5x^(3*1) +(0.5(-0.5))/(2!)x^(3*2)+(0.5(-0.5)(-1.5))/(3!)x^(3*3)+(0.5(-0.5)(-1.5)(-2.5))/(4!)x^(3*4)+...`

`=1+0.5x^3-0.25/(1*2)x^6+0.375/(1*2*3)x^9-0.9375/(1*2*3*4)x^(12)+...`

`=1+0.5x^3-0.25/2x^6+0.375/6x^9-0.9375/24x^(12)+...`

`=1+x^3/2-x^6/8+x^9/16-(5x^(12))/128+...`

Then, the Maclaurin series for the `f(x)=sqrt(1+x^3) ` can be expressed as:

`sqrt(1+x^3)=1+x^3/2-x^6/8+x^9/16-(5x^(12))/128+...`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial