If f(x)=5x-2 and g(x)= cubed sqrt of x ( or x^(1/3)), evaluate (fog)(-8)

Expert Answers

An illustration of the letter 'A' in a speech bubbles
Given that: f(x) = 5x-2. g(x) = (x^1/30 We need to find fog(x) First we will rewrite fog(x) as follows: fog(x) = f(g(x)) We will substitute with g(x) = x^1/3 ==> fog(x) = f(x^1/3) Now we will substitute with x^1/3 in f(x) ==> fog(x) = 5(x^1/3) -2 Now we will substitute with x=-8. ==> fog(x) = 5(-8^1/3) -2 = 5*-2 -2 = -10 -2 = -12 ==> fog(-8) = -12.
Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

We have f(x) = 5x - 2 and g(x) = x^(1/3) [ I have assumed by cubed sqrt you mean raised to the power (1/3)]

We have to find fog( - 8)

fog(x) = f(g(x)) = f( x^(1/3))

=5 * x^(1/3) - 2

For x = -8

fog(-8) = 5*(-8)^(1/3) - 2

=> 5* (-2) - 2

=> -10 - 2

=> -12

The required result is -12

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial