`f(x)=2x^2-4x-5`

Find the following;

The vertex;

Axis of symmetry;

The y-intercept;

Graph the function

College Algebra.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`f(x)= 2x^2-4x -5`

First, we will rewrite using the vertex form `f(x)= (x-h)^2 + k`

`==> f(x)= 2x^2 -4x -5+2 -2`

`==> f(x)= (2x^2 -4x +2) -5 -2`

`==> f(x)= 2(x^2-2x +1) -7`

`` `==> f(x)= 2(x-1)^2 -7`

`==> h= 1`

Then, the axis of symmetry is x = 1

`==> k = -7`

Now we will find the vertex.

`V = (v_x, v_y)`

`==> V = (h, k) = (1, -7)`

Using the standard form, the vertex is:

`v_x = -b/(2a) = 4/4 = 1`

`v_y= -(b^2-4ac)/(4a)= -(16+40)/8 = -56/8 = -7`

`==> V = (1,-7)`

Now we will find the y-intercept:

We know that the y-intercept is the point where the function meets the y-axis. Then, the value of x is 0.

`==> x = 0`

`==> f(0)= -5`

Then, the y-intercept is the point (0, -5).

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial