`dy/(dt) = t^2/sqrt(3+5t)` Solve the differential equation.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`dy/dt=t^2/sqrt(3+5t)`

`y=intt^2/sqrt(3+5t)dt`

Apply integral substitution :`u=sqrt(3+5t)`

`du=1/2(3+5t)^(1/2-1)(5)dt`

`du=5/(2sqrt(3+5t))dt`

`=>dt/sqrt(3+5t)=2/5du`

`u=sqrt(3+5t)`

squaring above,

`u^2=3+5t`

`=>5t=u^2-3`

`t=(u^2-3)/5`

`t^2=1/25(u^2-3)^2`

`t^2=1/25(u^4-6u^2+9)`

`y=intt^2/(sqrt(3+5t))dt`

`=int1/25(u^4-6u^2+9)(2/5)du`

`=int2/125(u^4-6u^2+9)du`

Take the constant out,

`=2/125int(u^4-6u^2+9)du`

Apply the sum and power rule,

`=2/125(intu^4du-int6u^2du+int9du)`

`=2/125(u^5/5-6u^3/3+9u)`

`=2/125(u^5/5-2u^3+9u)`

Substitute back `u=sqrt(3+5t)`

`=2/125(1/5(3+5t)^(5/2)-2(3+5t)^(3/2)+9(3+5t)^(1/2))`

simplify the above and add a constant C to the solution,

`=2/125(3+5t)^(1/2)(1/5(3+5t)^2-2(3+5t)+9)+C`

`=2/125sqrt(3+5t)(1/5(9+25t^2+30t)-2(3+5t)+9)+C`

`=2/125sqrt(3+5t)((9+25t^2+30t-10(3+5t)+45)/5)+C`

`=2/125sqrt(3+5t)((9+25t^2+30t-30-50t+45)/5)+C`

`=2/125sqrt(3+5t)((25t^2-20t+24)/5)+C`

`y=2/625(25t^2-20t+24)sqrt(3+5t)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial