The coordinates of two points are A(-2,6) & B(9,3). Find the coordinates of the point C on the X-axis such that AC=BC.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A(-2,6) B (9,3)

We need to find C on x-axis ==> C (x,0)

such that :

AC = BC

AC= sqrt(0-6)^2 + (x+2)^2]= sqrt[(36 + (x+2)^2]

BC= sqrt[(0-3)^2+ (x-9)^2]= sqrt[(9 + (x-9)^2]

==> AC = BC

==> sqrt(36+(x+2)^2]= sqrt[(9+ (x-9)^2]

square both sides:

==> 36 + (x+2)^2 = 9 + (x-9)^2

==> 36 + x^2 +4x + 4 = 9 + x^2 -18x + 81

Now group similars:

==> 22x -50 = 0

==> x= 50/22= 25/11

Then the point C is (25/11, 0)

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

Let the point C be at (x,y).

AC-->    D^2 = (-2 - x)^2 + (6 - y)^2 = x^2 + 4x + 4 + y^2 - 12y + 36

BC-->    D^2 = (x - 9)^2 + (y - 3)^2 = x^2 - 18x + 81 + y^2 - 6y + 9

AC = BC

x^2 + 4x + 4 + y^2 - 12y + 36 = x^2 - 18x + 81 + y^2 - 6y + 9

11x - 25 - 3y = 0

The point C lies on this line.

On the x-axis, y= 0. Therefore:

11x - 25 = 0

x = 25/11

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial