Consider the sequence a_n = ((-1)^n)/(sqrt(n))

Find a number A such that |a_n|< 1/5  for all n > A.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to consider the number `A>1/5`  such that:

`|a_n|<1/5<A => |a_n - 1/5|<A`

Substituting `((-1)^n)/(sqrt(n))`  for `a_n`  yields:

`|((-1)^n)/(sqrt(n)) - 1/5| < A`

Bringing the fractions to a common denominator yields:

`|(5*(-1)^n - sqrt n)/(5sqrtn)| < A`

Using the property of absolute value yields:

-`A < (5*(-1)^n - sqrt n)/(5sqrtn) < A`

Considering the inequality `(5*(-1)^n - sqrt n)/(5sqrtn) < A`  yields:

`5*(-1)^n - sqrt n < 5Asqrt n`

`5*(-1)^n < 5Asqrt n + sqrt n`

Factoring out `sqrt n`  yields:

`5*(-1)^n < sqrt n*(5A + 1) => (5*(-1)^n)/(5A + 1) < sqrt n`

Raising to square both sides yields:

`25/((5A+1)^2) < n`

Hence, evaluating A, uner the given conditions, yields that there exists `n > 25/((5A+1)^2)`  such that `|a_n|<1/5` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial