1. You should remember the formula of compound interest such that:

`A = P(1 + r/n)^(nt) `

A represents the amount of money accumulated

P represents the amount of money invested

t represents the number of years

n represents the number of times per year the interest is compounded

You need to substitute the given values in formula of compound interest such that:

`A = 5000(1 + 0.06/2)^(2t)`

`A = 5000*1.03^(2t)`

You may evaluate the amount of money accumulated after 1 year, two years, three years to write the geometric sequence `A_1,A_2,A_3` ,... such that:

`A_1 = 5000*1.03^2`

`A_2 =5000*1.03^4`

`A_3 =5000*1.03^6`

............................

**Hence, evaluating the geometric sequence, using the formula of
compound interest, yields `5000*1.03^2 , 5000*1.03^4 ,
5000*1.03^6,...`**

2. You need to substitute the given values in formula of compound interest such that:

`A = 10000(1 + 0.08/4)^(4t)`

`A = 10000*1.02^(4t)`

You may evaluate the amount of money accumulated after 1 year, two years, three years to write the geometric sequence `A_1,A_2,A_2` ,... such that:

`A_1 = 10000*1.02^4`

`A_2 = 10000*1.02^8`

`A_3 =10000*1.02^12`

............................

**Hence, evaluating the geometric sequence, using the formula of
compound interest, yields `10000*1.02^4 ,10000*1.02^8 ,
10000*1.02^12,....`**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.