Calculus II

Images:
Image (1 of 1)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Ahh!  I misread the question!

We want to use the following:

`A=int_(theta_1)^(theta_2) 1/2 r^2 d theta`

As already shown, we want to consider `theta` from `7/6 pi` to `11/6 pi`

So:

`int_(7/6 pi)^(11/6 pi) 1/2 (3+6 sin(theta))^2 d theta`

`=9/2 int_(7/6 pi)^(11/6 pi) (1+2 sin(theta))^2 d theta `

to make it easier to type, I'm going to write this as an indefinite integral:

`int 1+4 sin(theta)+4sin^2(theta) d theta =`

`theta-4 cos(theta)+4 int sin^2(theta) d theta=`

(here, use the double angle formula for cosine)

`theta-4 cos(theta)+4 int (1-cos(2 theta))/2 d theta =`

`theta-4 cos(theta)+ int 2 - 2cos(2 theta) d theta=`

`theta-4 cos(theta) + 2 theta -sin(2 theta)= `

`3 theta-4 cos(theta)-sin(2 theta)`

Now, evaluating at `7/6 pi` and `11/6 pi` , we have:

at `11/6 pi` :

`3(11/6 pi) - 4 (sqrt(3)/2) - (-sqrt(3)/2)=11/2 pi -3sqrt(3)/2`

at `7/6 pi` :

`3(7/6 pi) - 4 (-sqrt(3)/2)-(sqrt(3)/2)=7/2 pi +3 sqrt(3)/2`

So, the area enclosed is:

`9/2(2 pi-3 sqrt(3))=9pi - (27 sqrt(3))/2`

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

Before answering the question about "inner loop", let's just get a picture of this thing.

Sine is periodic with period `2pi` , so the function

`3+6 sin(theta)` has period `2 pi`

and if we figure out everything that happens from 0 to `2 pi` we'll know everything about the graph

At `theta=0` , r=3

(note: in the following pictures, the red arrow points in the direction of `theta` )

As `theta` goes from 0 to ` pi/2` , sine is positive and increasing.  So the radius is getting larger, up to:

`3+6*sin(pi/2)=9`

Thus:

Then, as `theta` goes from `pi/2` to `pi` , sine decreases back down to 0, so r decreases from 9 back down to 3, and you get a mirror image:

Then, as you increase `theta` a little bit larger than `pi` , sine becomes negative.  Eventually, you get to the point where `r=0`

To find where this happens, solve:

`0=3+6 sin theta`

`-3 = 6 sin theta`

`-1/2 = sin theta`

`theta = 7/6 pi, theta = 11/6 pi`

so this first happens at `theta=7/6 pi`

Increase `theta` a little more, and r becomes negative.  Thus, the graph is pointing in the opposite direction as `theta`

This continues, until once again r=0, which we already know happens at `11/6 pi`

r is again positive from `11/6 pi` to `2 pi`

so the graph points in the same direction as `theta`

also, ` `sine is increasing there, so, as we would expect, r goes from 0 back up to 3

Thus, the inner loop corresponds to `theta` from `7/6 pi` up to `11/6 pi` , it starts at (0,0),

and the direction of increasing `theta` is:

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial