Find the derivative of the function.

y= integral_(cos(x))^(sin(x)) log(5+9 v) dv

Find the derivative of the function.

y= integral_(cos(x))^(sin(x)) log(5+9 v) dv

y' (x)=________________

Expert Answers

An illustration of the letter 'A' in a speech bubbles

This can be done by using the first part of the fundamental thereom of calculus,

The first part of the theorem says,if,

`F(x) = int_a^xf(t)dt ` then,

`F'(x) = f(x) `

 

Now our integral is,

`F(x) = int_cos(x)^sin(x)log(5+9v)dv`

`F(x) = int_cos(x)^0log(5+9v) dv + int_0^sin(x)log(5+9v)dv`

`F(x) = -int_0^cos(x)log(5+9v) dv + int_0^sin(x)log(5+9v)dv`

now let us separate this into two integrals,

such that,

`F(x) = y + z`

where,

`y = -int_0^cos(x)log(5+9v)dv` and

`z = int_0^sin(x)log(5+9v)dv`

Now we can evaluate the derivatives of two functions separately,

first, y

we shall make a substitution as u =cos(x)

then `(du)/(dx) = -sin(x)`

so y becomes,

`y =-int_0^ulog(5+9v)dv`

now from the theroem, you get,

`(dy)/(du) = log(5+9u)`

Now from the chain rule, you get,

`(dy)/(dx) = (dy)/(du)*((du)/(dx)`

`(dy)/(dx) = log(5+9u)*(-sin(x))`

`(dy)/(dx) = -sin(x)log(5+9cos(x))`

 

 

Now we can floow the same procedure for z also,

let t = sin(x)

then `(dt)/(dx) = cos(x)`

now z becomes,

`z =int_0^tlog(5+9v)dv`

`(dz)/(dt) = log(5+9t)`

now from the chain rule we know,

`(dz)/(dx) = (dz)/(dt) * (dt)/(dx)`

`(dz)/(dx) = log(5+9t)*cos(x)`

`(dz)/(dx) = cos(x)log(5+9sin(x))`

 

Now F =y +z

then

`(dF)/(dx) = (dy)/(dx) + (dz)/(dx)`

`(dF)/(dx) = -sin(x)log(5+9cos(x)) + cos(x)log(5+9sin(x))`

`(dF)/(dx) = cos(x)log(5+9sin(x)) - sin(x)log(5+9cos(x))`

`(dF)/(dx) = log(5+9sin(x))^cos(x) - log(5+9cos(x))^sin(x)`

`(dF)/(dx) = log[((5+9sin(x))^cos(x))/((5+9cos(x))^sin(x))]`

 

 

 

 

 

 

 

 

 

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial