Calculate lim S, where S=1/(1*2) + 1/(2*3) + ...+ 1/[n*(n+1)].

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to notice that general term of sum is of form `1/(n*(n+1)), ` hence, you should use partial fraction decomposition such that:

`1/(n*(n+1)) = A/n + B/(n+1)`

Bringing all terms to a common denominator yields:

`1 = A(n+1) + Bn`

`1 = An + A+ Bn`

Collecting like terms yields:

`1 = n(A+B) + A`

Equating coefficients of like powers both sides yields:

`A+B = 0 =gt A=-B`

`A=1 =gt B=-1`

Substituting 1 for A and -1 for B yields:

`1/(n*(n+1)) = 1/n- 1/(n+1)`

Hence, you may write each term of sum such that:

`1/(1*2) = 1/1 - 1/2`

`1/(2*3) = 1/2 - 1/3`

`1/(3*4) = 1/3 - 1/4`

............................

`1/(n*(n+1)) = 1/n - 1/(n+1)`

Adding these terms yields:

`1/(1*2) + 1/(2*3) +...+1/(n*(n+1)) = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/n - 1/(n+1)`

Reducing like terms yields:

`1/(1*2) + 1/(2*3) +...+1/(n*(n+1)) = 1/1- 1/(n+1)`

You need to evaluate the limit of the sum such that:

`lim_(n-gtoo) (1/(1*2) + 1/(2*3) +...+1/(n*(n+1))) = lim_(n-gtoo) (1 - 1/(n+1))`

`lim_(n-gtoo) (1 - 1/(n+1)) =lim_(n-gtoo) 1 -lim_(n-gtoo)1/(n+1)`

`lim_(n-gtoo) (1 - 1/(n+1)) = 1 - 1/oo`

`lim_(n-gtoo) (1 - 1/(n+1)) = 1 -`  0

`lim_(n-gtoo) (1 - 1/(n+1)) = 1`

Hence, evaluating the limit of the sum yields `lim_(n-gtoo) (1/(1*2) + 1/(2*3) +...+1/(n*(n+1))) = 1.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial