calculate integral  `int_-3^4(4x-x^2) dx`  using Riemann Sum and regular partition with n sub intervals. 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should remember what is the formula taht helps you to evaluate the definite integral as a Riemann sum such that:

`int_-3^4 (4x - x^2)dx = int_-3^4 4x dx - int_-3^4 x^2 dx = lim_(n->oo) sum_(i=1)^n f(c_i)*Delta x_i`

You should split the interval `[-3,4]`  into n subdivisions of equal lengths such that:

`Delta = (4 - (-3))/n = 7/n`

Using the right endpoints `c_i`  of each interval yields:

`c_i = -3 + (7/n)*i`

You need to evaluate `f(c_i) ` for each function `y = 4x ` and `y = x^2`  such that:

`f(c_i) = 4(-3 + (7/n)*i)`

`f(c_i) = (-3 + (7/n)*i)^2`

`int_-3^4 (4x - x^2)dx = lim_(n->oo) sum_(i=1)^n 4(-3 + (7/n)*i)*(7/n) - lim_(n->oo) sum_(i=1)^n (-3 + (7/n)*i)^2*(7/n)`

`int_-3^4 (4x - x^2)dx = lim_(n->oo) (7/n)(-12n + (7/n)(n(n+1)/2))- lim_(n->oo) (7/n)((7/n)^2*(n(n+1)(2n+1))/6 - 42/n(n(n+1))/2) + 9)`

`int_-3^4 (4x - x^2)dx = lim_(n->oo) (-12*7 + 49/2) - lim_(n->oo) (14*49/6 - 21*7 + 63/n)`

`int_-3^4 (4x - x^2)dx = -59.5- 114.3 + 147 = -26.8`

Hence, evaluating the integral using Riemann sum yields `int_-3^4 (4x - x^2)dx ~~ -26.8`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial