Calculate the derivative of the function

f(x)=(sin x + cos x)/(2sin x - 3 cosx).

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the quotient rule to find the derivative of `f(x)=(sin x + cos x)/(2sin x - 3 cosx).`

Differentiating with respect to x yields:

`f'(x) = ((sin x + cos x)'*(2sin x - 3 cosx) - (sin x + cos x)*(2sin x - 3 cosx)')/(2sin x - 3 cosx)^2`

`f'(x) = ((cos x - sin x)*(2sin x - 3 cosx) - (sin x + cos x)*(2cos x + 3 sin x))/(2sin x - 3 cosx)^2`

Opening the brackets yields:

`f'(x) = (2sin x*cos x - 3cos^2 x - 2sin^2 x + 3 sin x*cos x - 2 sin x*cos x+ 3 sin^2 x + 2 cos^2 x + 3 sin x*cos x)/(2sin x - 3 cosx)^2`

`` `f'(x) = (6 sin x*cos x+ sin^2 x - cos^2 x)/(2sin x - 3 cosx)^2`

`f'(x) = (3 sin 2x- cos 2x)/(2sin x - 3 cosx)^2`

The derivative of the given function: `f'(x) = (3 sin 2x- cos 2x)/(2sin x - 3 cosx)^2`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial