Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places.

Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places.

int(2 cos^(5)x dx)),x=0...pi/2 )))

n=4

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The midpoint rule can be stated as below.

if n - number of intervals, the interval is , `Deltax`

`Deltax = (b-a)/n`

where, b - upper limit of integral and and a is the lower limit of integral.

then if for each interval, `x_1, x_2,....x_n` , the midpoint be `(x_1^*,x_2^*...x_n^*)`

`int_a^bf(x)dx = Deltax(f(x_1^*)+f(x_2^*)+....+f(x_n^*))`

now for our, problem, (b-a) is (pi/4 -0).

then, `Deltax = (pi/4)/4 = pi/16`

therefore the intervals are, `(0,pi/16), (pi/16,pi/8) and (pi/8,pi/4)`

the midpoints are,

`pi/32, (3pi)/32 and (5pi)/32`

therefore the midpoint values,

`2cos^5(pi/32) = 1.952309`

`2cos^5((3pi)/32) = 1.604923`

`2cos^5((5pi)/32) = 1.067035`

according to definiton,

`int_0^(pi/4)2cos^5(x)dx = (pi/16)(1.952309+1.604923+1.067035))`

`int_0^(pi/4)2cos^5(x)dx = 0.9079`

as accurate to 4 decimal places, (The actual anser is 1.01352, so this is an approximation)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial