The area of a right triangle is decreasing at 2 cm^2/s. If the hypotenuse is increasing at 1 cm/s, find the rate of change of the ratio of the sides

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should notice that the problem involves related rates.

You need to come up with the notations: A for area, H for hypotenuse, x for leg 1 and y for leg 2.

You need to remember the formula of area of right triangle such taht:

`A = (xy)/2`

Differentiating both sides with respect to t yields:

`(dA)/(dt) = (1/2)*(x(dy)/(dt) + y(dx)/(dt))`

The problem provides the information that the area of right triangle is decreasing at 2 `cm^2/s`  such  that:

`(dA)/(dt) = -2`

`-2 = (1/2)*(x(dy)/(dt) + y(dx)/(dt)) =gt -4 = (x(dy)/(dt) + y(dx)/(dt)) =gt -4 - x(dy)/(dt) = y(dx)/(dt)`

You need to use Pythagorean theorem such that:

`H^2 = x^2 + y^2`

Differentiating both sides yields:

`2H(dH)/(dt) = 2x(dx)/(dt) + 2y(dy)/(dt)` 

The problem provides the information that the hypotenuseis increasing at 1 `cm/s`  such that:

`2H*1 = 2x(dx)/(dt) + 2y(dy)/(dt)`

`H = x(dx)/(dt) + y(dy)/(dt) =gt y(dy)/(dt) = H - x(dx)/(dt) `

The ratio of sides is `x/y` , hence, differentiating with respect to t yields:

`(x(dx)/(dt)*y - x*y*(dy)/(dt))/(y^2)`

`(x(dx)/(dt)*y - x*(H - x(dx)/(dt)))/(y^2)`

`(x(dx)/(dt)*(y + x)- x*H)/(y^2)`

Hence, evaluating the rate of change of ratio of sides yields `(d(x/y))/(dt) = (x(dx)/(dt)*(y + x) - x*H)/(y^2)`.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial