8(cos(15π/8)sin(5π/8))

i would like to know the complete solution. thanks

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Supposing that you need to conver the product into a sum, than you should use the formula:

`sin alpha*cos beta = (1/2)*[sin(alpha - beta) + sin(alpha+beta)]`

Hence, substituting `5pi/8`  for `alpha`  and `15pi/8`  for `beta`  yields:

`sin (5pi/8)*cos (15pi/8) = (1/2)*[sin(5pi/8 - 15pi/8) + sin(5pi/8 + 15pi/8)]`

Multiplying by 8 yields:

`8sin (5pi/8)*cos (15pi/8) = (8/2)*[sin(5pi/8 - 15pi/8) + sin(5pi/8 + 15pi/8)]`

`8sin (5pi/8)*cos (15pi/8) = 4*[sin(-10pi/8) + sin(20pi/8)]`

You need to remember that `sin(-alpha) = -sin alpha` , hence `sin(-10pi/8) = -sin(10pi/8) = -sin (5pi/4)`

Notice that `sin(5pi/4) = sin(pi/4 + pi) = sin(pi/4)*cos pi + sin pi*cos(pi/4) = -sqrt2/2 (cos pi=-1 and sin pi=0)` .

Hence, `-sin(5pi/4) = sqrt2/2.`

Evaluating `sin 20pi/8`  yields:

`sin 20pi/8 = sin 5pi/2 = sin(pi/2 + 4pi/2) = sin(pi/2 + 2pi) = sin pi/2 = 1` .

You need to substitute 1 for `sin 20pi/8`  and `sqrt2/2`  for `-sin(5pi/4)`  such that:

`8sin (5pi/8)*cos (15pi/8) = 4*(sqrt2/2 + 1)`

`8sin (5pi/8)*cos (15pi/8) = 2*(sqrt2 + 2)`

Hence, evaluating the product `8sin (5pi/8)*cos (15pi/8) ` yields `8sin (5pi/8)*cos (15pi/8) = 2*(sqrt2 + 2).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial