We have to find the antiderivative of y = x / sqrt ( x^2 - 9)

Let u = x^2 - 9

=> du / dx = 2x

=> x dx = du/2

Int [ x / sqrt ( x^2 - 9) dx]

=> Int [(1/2)*(1/ sqrt u) du]

=> Int [ (1/2)* u^ (-1/2) du]

=> (1/2)* u^( 1/2)/ (1/2) + C

=> u^(1/2) + C

replace u with x^2 - 9

=> sqrt (x^2 - 9) + C

**The required integral is sqrt (x^2 - 9) + C**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.