Let F(s) = s+2/s+10. Find the maximum of F(s) on the interval [1,4].

Expert Answers

An illustration of the letter 'A' in a speech bubbles

F(s) = s + 2/s + 10. To find the maximum value of F(s) in the interval [1,4], we differentiate F(s) and equate the derivative to 0. Also, at the point of maximum value F''(s) is negative.

F(s) = s + 2/s + 10

F'(s) = 1 - 2/s^2

1 - 2/s^2 = 0

=> s^2 - 2 = 0

=> s = +sqrt 2 and s = -sqrt 2

But F''(s) = 6/s^3 which is positive, therefore there is no maximum value for F(s).

The required maximum value of F(s) does not exist.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial