Evaluate the limit of the function (x^2-3x+2)/(x^2-4) using L'Hospital rule.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

As you have not specified what x is tending to, I take it as 2.

We have to find the value of lim x--> 2 [(x^2-3x+2)/(x^2-4)]

If we substitute x = 2, we get the indeterminate form 0/0. So we use L'Hopital's Rule and substitute the numerator and the denominator by their derivatives

=> lim x-->2 [(2x -3)/(2x)]

substitute x = 2

=> (4 - 3) / 4

=> 1/4

The required value of lim x--> 2 [(x^2-3x+2)/(x^2-4)] = (1/4)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial