Evaluate the anti derivative of e^2x * cos 3x.

 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to find Int [e^2x * cos 3x dx]

Here the best way to solve would be to use integration by parts.

Int [u dv] = u*v – Int [v du]

take u = e^2x, du = 2*e^2x dx

dv = cos 3x dx, v = (1/3)* sin 3x

Int [e^2x * cos 3x dx]

=> [e^2x*sin 3x]/3 – (2/3)*Int [e^2x * sin 3x dx]

We have again landed up with an integral like the original with Int [e^2x * sin 3x dx].

So using integration by parts again, this time we take U = e^2x, dU = 2*e^2x dx

dV = sin 3x dx, V = (-1/3) cos 3x

Int [e^2x * sin 3x dx] = (- e^2x * cos 3x)/3 + (2/3)*Int [e^2x * cos 3x dx]

So we have

Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 – (2/3) [(- e^2x * cos 3x)/3 + (2/3)*Int [e^2x * cos 3x dx]]

=> Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*e^2x * cos 3x)/3 - (2/3)*(2/3)*Int [e^2x * cos 3x dx]]

=> Int [e^2x * cos 3x dx] + (2/3)*(2/3)*Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*(e^2x * cos 3x)/3

=> (13/9)* Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*(e^2x * cos 3x)/3

=> Int [e^2x * cos 3x dx] =3*[e^2x*sin 3x]/13 + 2*(e^2x * cos 3x)/13

=> Int [e^2x * cos 3x dx] = [3*(e^2x*sin 3x) + 2*(e^2x * cos 3x)]/13

The required result is

[3*(e^2x*sin 3x) + 2*e^2x*cos 3x]/13 + C

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial