A perfectly competitive firm can sell a product at a market price of $10. For an output X, with total costs are TC = 10 + 2X + .25X^2. How many units should they produce to maximize profit?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A perfectly competitive firm can sell its product at a market price of $10 per unit. The total costs incurred by the firm if X products are produced is given by TC = 10 + 2X + 0.25X^2. The revenue earned when X units are sold is 10*X. This gives the profit made when X units are sold as P = 10X - 10 - 2X - 0.25*X^2 = 8X - 10 - 0.25*X^2.

To determine the number of units that need to be produced to maximize profits, the first derivative of P with respect to X, P', has to be determined, this should be equated to 0 and the resulting equation solved for X.

P' = 8 - 0.5X

8 - 0.5X = 0

=> X = 16

The firm should produce 16 units to maximize its profits. The maximum profits earned by the firm are $54.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial