`yy' = -8cospix` Find the general solution of the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The general solution of a differential equation in a form of` f(y) y'=f(x)` can

 be evaluated using direct integration.

We can denote `y'` as `(dy)/(dx) ` then, 

`f(y) y'=f(x)`

`f(y) (dy)/(dx)=f(x)`

Rearrange into : `f(y) (dy)=f(x) dx`

To be able to apply direct integration : `intf(y) (dy)=int f(x) dx.`

 Applying this to the given problem: `yy'=-8cos(pix)` ,  we get:



`int y(dy)=int-8cos(pix)dx`

For the integration on the left side, we apply Power Rule integration: int u^n `du= u^(n+1)/(n+1)` on int `y dy` .

`int y dy = y^(1+1)/(1+1)`

            `= y^2/2`

For the integration on the right side, we apply the basic integration property: `int c*f(x)dx= c int f(x) dx` and basic integration formula for cosine function: `int cos(u) du = sin(u) +C`

`int -8 cos(pix) dx= -8 int cos(pix) dx`

Let `u = pix` then `du = pi dx` or` (du)/pi=dx.`

Then the integral becomes:

`-8 int cos(pix) dx=-8 int cos(u) *(du)/pi`

                              `=-8/pi int cos(u) du`

                             `=-8/pi*sin(u) +C`

Plug-in `u=pix` in `-8/pi*sin(u) +C` , we get:

`-8 int cos(pix) dx=-8/pi*sin(pix) +C`


Combing the results, we get the general solution for differential equation `(yy'=-8cos(pix))` as:

`y^2/2=-8/pi*sin(pix) +C`

`2* [y^2/2] = 2*[-8/pi*sin(pix)]+C`

`y^2 =-16/pi*sin(pix)+C`

The general solution:` y ^2=-16/pisin(pix)+C` can be expressed as:

`y = +-sqrt(-16/pisin(pix)+C)` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team