`yy' - 2e^x = 0 , y(0) = 3` Find the particular solution that satisfies the initial condition

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the given problem:` yy'-2e^x=0` , we can evaluate this by applying variable separable differential equation in which we express it in a form of `f(y) dy = f(x)dx` .

 Then, `yy'-2e^x=0` can be rearrange into `yy'= 2e^x`

Express y'  as (dy)/(dx):

 `y(dy)/(dx)= 2e^x`

Apply direct integration in the form of  `int f(y) dy = int f(x)dx` :


`ydy= 2e^xdx`

`int ydy= int 2e^x dx`

For the left side, we apply Power Rule integration: `int u^n du= u^(n+1)/(n+1)` .

`int y dy= y^(1+1)/(1+1)`

             ` = y^2/2`

 For the right side, we apply basic integration property: `int c*f(x)dx= c int f(x) dx` and basic integration formula for exponential function: `int e^u du = e^u+C ` on the right side.

`int 2e^x dx= 2int e^x dx`

                  `= 2e^x+C`

Combining the results for the general solution of differential equation:


`2* [y^2/2] = 2*[2e^x]+2*C `     

Let `2*C= C` . Just a constant.

`y^2= 4e^x+C`


 To find the particular solution we consider the initial condition `y(0)=3` which implies `x=0` and `y =3` .

Plug them in to  `y^2= 4e^x+C` , we get:

`3^2= 4e^0+C`

`9= 4*1+C`


Then `C=9-4=5` .

Plug-in `C=5` in`y^2= 4e^x+C` , we get the particular solution:

`y^2= 4e^x+5`

 `y = +-sqrt(4e^x+5).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial