`ysqrt(1-x^2)y' - xsqrt(1-y^2) = 0 , y(0) = 1` Find the particular solution that satisfies the initial condition

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The given problem: `ysqrt(1-x^2)y' -xsqrt(1-y^2)=0` is written in a form of first order "ordinary differential equation" or first order ODE.

 To evaluate this, we can apply variable separable differential equation  in which we express it in a form of `f(y) dy= g(x) dx ` before using direct integration on each side.

To rearrange the problem, we move `xsqrt(1-y^2)` to the other to have an equation as:`ysqrt(1-x^2)y' = xsqrt(1-y^2)` .

 Divide both sides by `sqrt(1-y^2)sqrt(1-x^2)` :

`(ysqrt(1-x^2)y')/(sqrt(1-y^2)sqrt(1-x^2)) = (xsqrt(1-y^2))/(sqrt(1-y^2)sqrt(1-x^2))`

`(y*y')/sqrt(1-y^2)= x/sqrt(1-x^2)`

Applying direct integration: `int(y*y')/sqrt(1-y^2)= int x/sqrt(1-x^2)`

Express `y'` as `(dy)/(dx)` : `int(y*(dy)/(dx))/sqrt(1-y^2)= int x/sqrt(1-x^2)`

Express in a form of `f(y) dy= g(x) dx` : `int(y*dy)/sqrt(1-y^2)= int (x*dx)/sqrt(1-x^2)`

 

To find the indefinite integral on both sides, we let:

`u = 1-y^2` then `du =-2y dy` or   `(du)/(-2) =y dy`

`v = 1-x^2` then `dv =-2x dx` or `(dv)/(-2) =x dx`

 The integral becomes: 

`int(y*dy)/sqrt(1-y^2)= int (x*dx)/sqrt(1-x^2)`

`int((du)/(-2))/sqrt(u)= int ((dv)/(-2))/sqrt(v)`

Apply the basic integration property: `int c*f(x) dx= c int f(x) dx` .

`(-1/2) int((du))/sqrt(u)= (-1/2) int (dv)/sqrt(v)`

Apply the Law of Exponents: `sqrt(x) = x^(1/2) and 1/x^n = x^(-n)` .

Then, the integral becomes:

`(-1/2) int((du))/u^(1/2)= (-1/2) int (dv)/v^(1/2)`

`(-1/2) int u^(-1/2)du= (-1/2) int v^(-1/2)dv`

Applying Power Rule of integration: `int x^ndx= x^(n+1)/(n+1)`

`(-1/2) int u^(-1/2)du= (-1/2) int v^(-1/2)dv`

`(-1/2) u^(-1/2+1)/(-1/2+1)= (-1/2) v^(-1/2+1)/(-1/2+1)+C`

`(-1/2) u^(1/2)/(1/2)= (-1/2) v^(1/2)/(1/2)+C`

`-u^(1/2)= - v^(1/2)+C`

Note: `(-1/2)/(1/2) = -1`

In radical form: `- sqrt( u)= -sqrt(v)+C`

Plug-in `u =1-y^2` and `v=1-x^2` , we get the general solution of differential equation:

`- sqrt( 1-y^2)= -sqrt(1-x^2)+C`

Divide both sides by `-1` , we get: `sqrt( 1-y^2)= sqrt(1-x^2)+C` .

Note:`C/(-1) = C` as arbitrary constant

For particular solution, we consider the initial condition ` y(0) =1` where  `x_0=0` and `y_0=1` .

Plug-in the values, we get:

`sqrt( 1-1^2)= sqrt(1-0^2)+C`

`sqrt(0)=sqrt(1)+C`

`0=1+C`

`C = 0-1`

`C =-1` .

 Then plug-in C =-1 on the general solution: `sqrt( 1-y^2)= sqrt(1-x^2)+C` .

`sqrt( 1-y^2)= sqrt(1-x^2)+(-1)`

 

`(sqrt(1-y^2))^2 =(sqrt(1-x^2) -1)^2`

`1-y^2= (1-x^2) -2sqrt(1-x^2) +1`

Rearrange into:

`y^2=-(1-x^2) +2sqrt(1-x^2)`

`y^2=-1+x^2 +2sqrt(1-x^2)`

`y^2=x^2+2sqrt(1-x^2)-1`

Taking the square root on both sides:

`y =sqrt(x^2+2sqrt(1-x^2) -1)`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial