# you have \$1000 to invest in an account with a rate 8%, compounded semi-annually. How long will it take you to double your money?

Your exponent here should be 2t (with t the unknown time in years), and you will set this expression equal to 2000.

Approved by eNotes Editorial Team

How long will it take to double an initial investment of 1,000 if you are paid 8% interest, and the interest is applied semiannually.

Use the formula `A(t)=A_0(1+r/n)^(nt) `

Here A(t) represents the amount accumulated after t years, t is in years, n is the number of compounding periods per year, and r is the annual interest rate. A0 is the initial deposit.

So we want A(t)=2000, `A_0=1000 ` , n=2, and r=.08. Note that the 8% given is assumed to be the annual rate, unless otherwise specified.

`2000=1000(1+.08/2)^(2t) ` or

`(1.04)^(2t)=2 `

We can use logarithms to solve:

`ln(1.04)^(2t)=ln(2) ` Use a property of logs:

(2t)ln(1.04)=ln(2)

`2t=(ln(2))/(ln(1.04)) `

`t~~8.83 ` years

The rule of 72 can give us an estimate -- take 72 divided by the annual percentage rate to estimate the time to double. Here, the effective annual interest rate is between 8% and 9%, so the estimate is between 8 and 9 years which agrees with our answer.

--------------------------------------------------------------------------

It will take about 8.8 years to double

-------------------------------------------------------------------------