Given` y'+y*secx=secx`
when the first order linear ordinary Differentian equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx) `
so,
`y'+y*secx=secx--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = secx and q(x)=secx`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
=`((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)`
first we shall solve
`e^(int secx dx)=e^(ln(secx +tanx)) = secx+tanx`
so
proceeding further, we get
y(x) =`((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)`
=`(int ((secx+tanx)*(secx)) dx +c)/(secx+tanx)`
=`(int ((sec^2x+tanx*(secx)) dx +c)/(secx+tanx)`
=`(int (sec^2x) dx+int (tanx*(secx)) dx +c)/(secx+tanx)`
=`(tanx+secx +c)/(secx+tanx)`
so `y(x)=(tanx+secx +c)/(secx+tanx)=1 +c/(secx+tanx)`
Now we have to find the particular solution at y(0) =4
so ` y(x) =1 +c/(secx+tanx)`
=> `y(0) = 1+c/(sec(0)+tan(0)) =4`
=> `1+c=4`
c=3
so the particular solution is
`y(x) = 1+ 3/(secx+tanx)`See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.