# `y = x/(sqrt(x^2 + 1))` Find the derivative of the function.

*print*Print*list*Cite

### 1 Answer

Given `y=x/sqrt(x^2+1)`

Rewrite the function as `y=x(x^2+1)^(-1/2)`

Find the derivative using the Product Rule and Chain Rule.

`y'=x[(-1/2)(x^2+1)^(-3/2)]+(x^2+1)^(-1/2)(1)`

`y'=(x^2+1)^(-3/2)[(-1/2)x+(x^2+1)]`

`y'=(x^2+1)^(-3/2)[-x/2+(2x^2)/2+2/2]`

` ` `y'=(2x^2-x+2)/[2(x^2+1)^(3/2)]`

`y'=(2x^2-x+2)/(2sqrt((x^2+1)^3))`

` `