`y = x e ^(-kx)` Find the derivative of the function.

Expert Answers
hkj1385 eNotes educator| Certified Educator

Note:- 1) If y = x^n ; then dy/dx = n*x6(n-1) ; where n = real number

2) if y = e^(ax) ; then ; dy/dx = a*e^(ax)

3) If y = u*v ; where u & v are both functions of 'x' ; then

dy/dx = y' = u*(dv/dx) + v*(du/dx)

Now, 

Given y = x*e^(-kx)

thus, y' = dy/dx = -[(kx)*e^(-kx)] + {e^(-kx)}

or, dy/dx = y' = {e^(-kx)}*{1 - kx}

balajia | Student

`y=xe^(-kx)`

`y'=e^(-kx)(dx/dx)+x(d(e^(-kx))/dx)`

`y'=e^(-kx)+x(-k)e^(-kx)`

`y'=e^(-kx)*(1-kx)`

``

Access hundreds of thousands of answers with a free trial.

Start Free Trial
Ask a Question