# What is the derivative of y = x^2*e^(4x)

*print*Print*list*Cite

### 1 Answer

The function `y = x^2*e^(4x)` . The derivative can be found using the product rule.

`y' = (x^2)'*e^(4x) + x^2*(e^(4x))'`

=> `2*x*e^(4x) + x^2*4*e^(4x)`

=> `2*x*e^(4x)(1 + 2x)`

**The derivative of `y = x^2*e^(4x)` is **`y' = 2xe^(4x)(1 + 2x)`