`y = x^2/2 , [0,4]` Find the arc length of the curve over the given interval.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To find the arc length of a curve, we follow the formula:

`S = int_a^b sqrt(1+((dy)/(dx))^2)`  if `y=f(x)` , `alt=xlt=b` or ` [a,b]` .

For the given problem: `y =x^2/2` on interval `[0,4]` , we have boundary values: `a= 0` and `b=4` .  

Apply Power Rule for differentiation:` d/(dx) x^n = n * x^(n-1) * dx` .

`(dy)/(dx) = d/(dx) (x^2/2)`

     ` = 1/2d/(dx) (x^2)`

     ` = 1/2 * [ 2 *x^(2-1) * 1 ]`

     ` =1/2 * [ 2x]`

    ` = (2x)/2 `

      ` = x`

Plug-n `a=0` , `b = 4` , and `(dy)/(dx)= x` on the formula `S = int_a^b sqrt(1+((dy)/(dx))^2)` , we get:

`S = int_0^4 sqrt(1+x^2) dx`

From indefinite integral table, the problem resembles the formula for integral with roots:

`int sqrt(u^2+-a^2) dx=1/2usqrt(a^2+-u^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)|` .

Take note we have "`+` " sign inside the radical part then we follow formula as:

`int sqrt(u^2+a^2)dx=1/2*usqrt(a^2+u^2)+1/2*a^2ln|u+sqrt(u^2+a^2)|` .

Applying the formula, we get

`S = int_0^4 sqrt(1+(x)^2)`

` =[1/2*xsqrt(1^2+x^2)+1/2*1^2ln|x+sqrt(x^2+1^2)|]|_0^4`

`=[1/2*xsqrt(1+x^2)+1/2*ln|x+sqrt(x^2+1)|]|_0^4`

` =[(xsqrt(1+x^2))/2+(ln|x+sqrt(x^2+1)|)/2]|_0^4`

Apply definite integration formula: `F(x)|_a^b= F(b)-F(a)` .

`S =[(4sqrt(1+4^2))/2+(ln|4+sqrt(4^2+1)|)/2]-[(0sqrt(1+0^2))/2+(ln|0+sqrt(0^2+1)|)/2]`

` =[(4sqrt(1+16))/2+(ln|4+sqrt(16+1)|)/2]-[(0sqrt(1+0))/2+(ln|0+sqrt(0+1)|)/2]`

` =[(4sqrt(17))/2+(ln|4+sqrt(17)|)/2]-[0/2+(ln|0+sqrt(1)|)/2]`

` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+(ln|1|)/2]`

` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+0/2]`

` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0]`

` =2sqrt(17)+(ln|4+sqrt(17)|)/2`  or `9.29` (approximated value)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team