To find the arc length of a curve, we follow the formula:
`S = int_a^b sqrt(1+((dy)/(dx))^2)` if `y=f(x)` , `alt=xlt=b` or ` [a,b]` .
For the given problem: `y =x^2/2` on interval `[0,4]` , we have boundary values: `a= 0` and `b=4` .
Apply Power Rule for differentiation:` d/(dx) x^n = n * x^(n-1) * dx` .
`(dy)/(dx) = d/(dx) (x^2/2)`
` = 1/2d/(dx) (x^2)`
` = 1/2 * [ 2 *x^(2-1) * 1 ]`
` =1/2 * [ 2x]`
` = (2x)/2 `
` = x`
Plug-n `a=0` , `b = 4` , and `(dy)/(dx)= x` on the formula `S = int_a^b sqrt(1+((dy)/(dx))^2)` , we get:
`S = int_0^4 sqrt(1+x^2) dx`
From indefinite integral table, the problem resembles the formula for integral with roots:
`int sqrt(u^2+-a^2) dx=1/2usqrt(a^2+-u^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)|` .
Take note we have "`+` " sign inside the radical part then we follow formula as:
`int sqrt(u^2+a^2)dx=1/2*usqrt(a^2+u^2)+1/2*a^2ln|u+sqrt(u^2+a^2)|` .
Applying the formula, we get
`S = int_0^4 sqrt(1+(x)^2)`
` =[1/2*xsqrt(1^2+x^2)+1/2*1^2ln|x+sqrt(x^2+1^2)|]|_0^4`
`=[1/2*xsqrt(1+x^2)+1/2*ln|x+sqrt(x^2+1)|]|_0^4`
` =[(xsqrt(1+x^2))/2+(ln|x+sqrt(x^2+1)|)/2]|_0^4`
Apply definite integration formula: `F(x)|_a^b= F(b)-F(a)` .
`S =[(4sqrt(1+4^2))/2+(ln|4+sqrt(4^2+1)|)/2]-[(0sqrt(1+0^2))/2+(ln|0+sqrt(0^2+1)|)/2]`
` =[(4sqrt(1+16))/2+(ln|4+sqrt(16+1)|)/2]-[(0sqrt(1+0))/2+(ln|0+sqrt(0+1)|)/2]`
` =[(4sqrt(17))/2+(ln|4+sqrt(17)|)/2]-[0/2+(ln|0+sqrt(1)|)/2]`
` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+(ln|1|)/2]`
` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+0/2]`
` =[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0]`
` =2sqrt(17)+(ln|4+sqrt(17)|)/2` or `9.29` (approximated value)
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.