`y=sqrt(4-x^2) , -1<=x<=1` Set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the x-axis.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To calculate the surface area generated by curve `y=f(x)` revolving about `x`-axis between `a` and `b`, we use the following formula

`S_x=2pi int_a^b y sqrt(1+y'^2)dx`

Let us therefore first find the derivative `y'.`



We can now calculate the surface.

`S_x=2pi int_-1^1sqrt(4-x^2)sqrt(1+x^2/(4-x^2))dx=`

`2pi int_-1^1sqrt(4-x^2)sqrt(4-x^2+x^2)/sqrt(4-x^2)dx=`

`2pi int_-1^1 2dx=4pi x|_-1^1=4pi(1+1)=8pi`

The area of surface generated by revolving the given curve about `x`-axis between `-1` and `1` is `8pi`.

Graphs of the curve and the surface generated by curve's revolution can be seen in the images below.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Image (1 of 2)
Image (2 of 2)
Approved by eNotes Editorial